

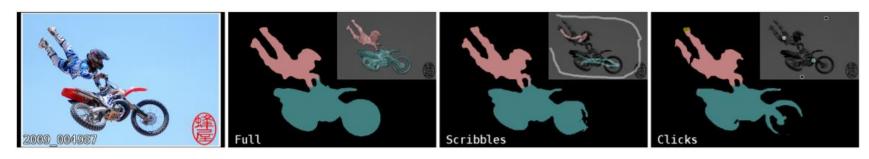
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis and Luc Van Gool

Towards Unsupervised Semantic Segmentation

Problem: How to learn dense semantic representations without supervision?

- \rightarrow Most works rely on annotations:
- Weakly supervised: scribbles, bounding boxes, tags
- Semi supervised: fraction is labeled



→ Our focus: learn pixel-level representations for semantic segmentation without using ground-truth

KU LEUVEI

Obukhov et al., "Gated CRF loss for weakly supervised semantic image segmentation" [Figure]

Prior work – Three paradigms

I. Representation Learning

Idea: (1) Solve a pretext task to learn meaningful representations without annotations +

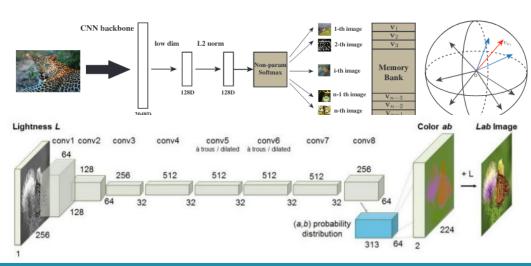
(2) offline clustering

Image-level:

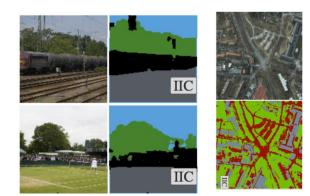
- → Image based
- \rightarrow Background can dominate

<u>Patch-level</u>: Ex: Colorization → Proxy task is not

inate decoupled (covariant)



II. End-To-End Learning



KU LEU

Idea: - Maximize mutual information between an image and its augmentations at pixel level

Limitations: - Small-scale datasets with narrow visual domain

- Cluster learning latches onto low-level features
- Special mechanisms required (Sobel filtering)

III. Boundary supervision

Idea: - Obtain semantic segments from boundaries

Limitations: - Annotated boundaries

- K-Means?

[2] Larsson et al., Colorization as a proxy task for visual understanding. CVPR, 2017.

[3] Wu et al., Unsupervised feature learning via non-parametric instance discrimination. CVPR, 2018.

Approach (Overview)

Divide-and-conquer strategy:

<u>Step 1:</u> Look for regions that likely belong together → Shared pixel ownership assumption → Use a mid-level visual prior

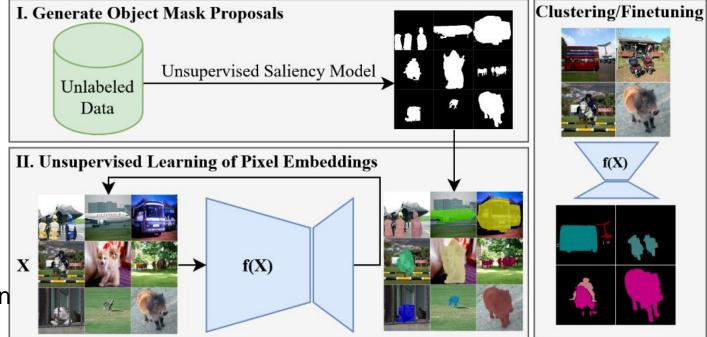
Step 2: Generate semantic pixel embeddings

 \rightarrow Leverage object mask proposals

 \rightarrow Maximize or minimize the agreement

Advantages:

- Reduced dependence on the network initialization
- Proxy task is decoupled from feature learning
- Kmeans can be applied to obtain semantics
- \rightarrow hypothesis: this a more reliable pixel grouping strategy



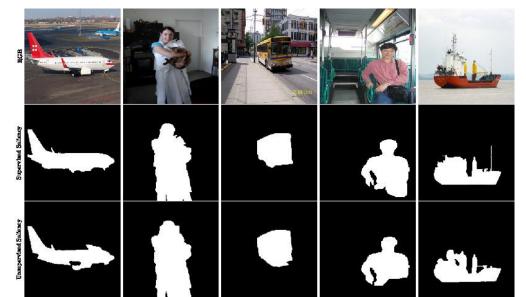
Perceptual Priors for Grouping Pixels

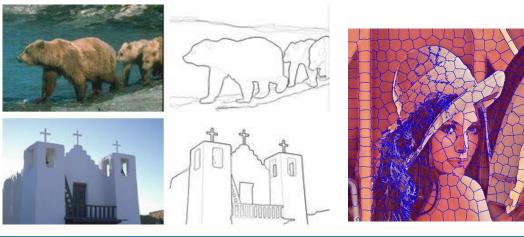
<u>Criteria</u>:

- No reliance on external supervision
- Strong generalization to new scenes
- \rightarrow bottom-up approach

(1) Low-level Vision:

- Handcrafted kernels: intensity, distance, color, texture,...
- Edges or superpixels

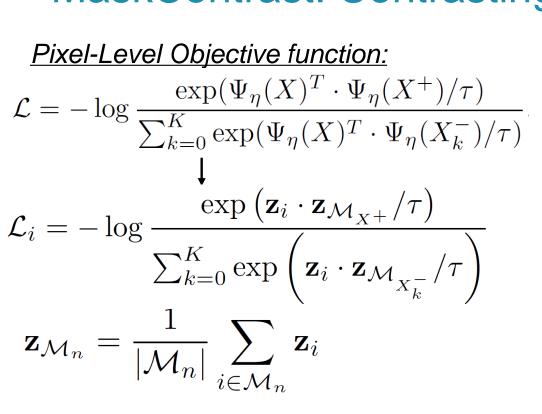




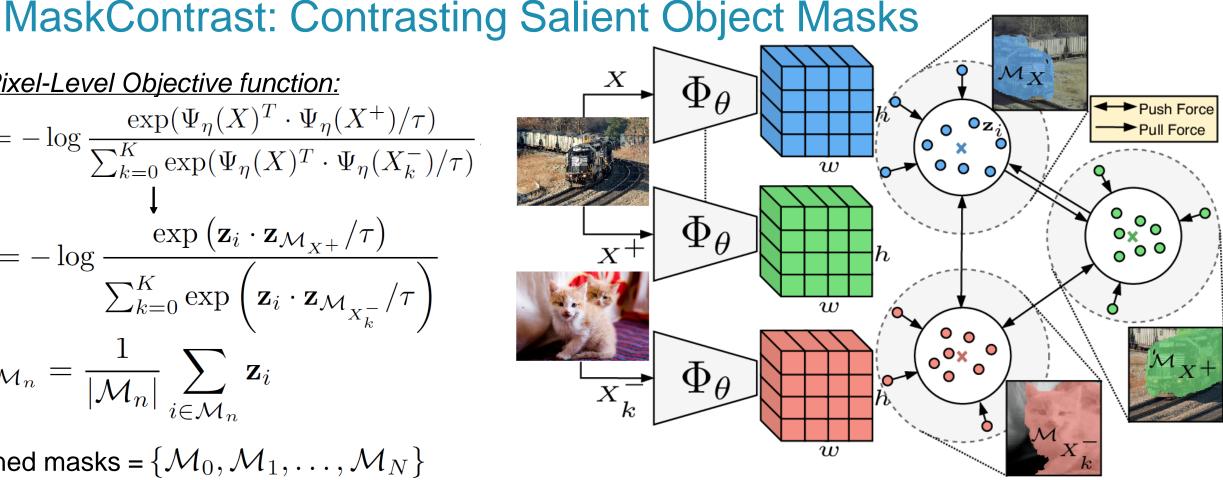
2) Mid-level Vision:

 \rightarrow More semantically meaningful

- Saliency:
 - ensemble of handcrafted priors
 - background connectivity, hard edges, Guassian, etc.
- Self-supervised depth / optical flow



Mined masks = { $\mathcal{M}_0, \mathcal{M}_1, \ldots, \mathcal{M}_N$ } Positive pairs = $(\mathbf{z}_i, \mathbf{z}_{\mathcal{M}_{X^+}})$ for $i \in \mathcal{M}_X$ Negative pairs = $(\mathbf{z}_i, \mathbf{z}_{\mathcal{M}_{X_i^-}})$



- **Pull force:** Maximize the agreement between pixels belonging to the same (augmented) mask.
- **Push force:** avoid mode collapse in the embedding space by driving pixels from different masks apart.

I. Experiments: Setup and Ablations

Training setup:

- Unsupervised Saliency^[1] / supervised saliency^[2]
- DeeplabV3 (dilated ResNet50)
- Similar to MoCo's setup (augmentation + memory bank + momentum)

Ablations (PASCAL VOC):

Mask Proposals	LC	Augmented	Memory	Momentum	LC	Hyperparameter	Range	LC
	(MIoU)	Views		Encoder	(MIoU)			(MIoU)
Hierarchical Seg.	30.5	×	X	×	52.4	Temperature $ au$	[0.1-1]	56.2 ± 1.4
Unsupervised Sal. Model	58.4	\checkmark	×	×	54.0	Negatives K	[64-1024]	57.0 ± 0.6
Supervised Sal. Model	62.2	\checkmark	\checkmark	×	55.0			
(a) Comparison of three mask proposal \checkmark		\checkmark	\checkmark	\checkmark	58.4	(c) Hyperparameter study. We report the mean and standard deviation.		

mechanisms. (

(b) Analysis of the used training mechanisms.

- → Regions extracted with the hierarchical segmentation algorithm were often too small to be representative of an object or part.
- \rightarrow Mid-level visual prior is beneficial.

II. Experiments: Linear Classifier and Clustering (PASCAL)

Method	LC	K-Means
Proxy task based:		
Co-Occurence	13.5	4.0
CMP	16.5	4.3
Colorization	25.5	4.9
Clustering based:		
IIC	28.0	9.8
Contrastive learning based:		
Inst. Discr.	26.8	4.4
MoCo v2	45.0	4.3
InfoMin	45.2	3.7
SWAV	50.7	4.4
Boundary based:		
SegSort [†]	36.2	_
Hierarch. Group. [†]	48.8	-
ImageNet (IN) Classifier (Supervised)	53.1	4.7
MaskContrast (MoCo Init. + Unsup. Sal.)	58.4	35.0
MaskContrast (MoCo Init. + Sup. Sal.)	62.2	38.9
MaskContrast (IN Sup. Init. + Unsup. Sal.)	61.0	41.6
MaskContrast (IN Sup. Init. + Sup. Sal.)	63.9	44.2

MaskContrast:

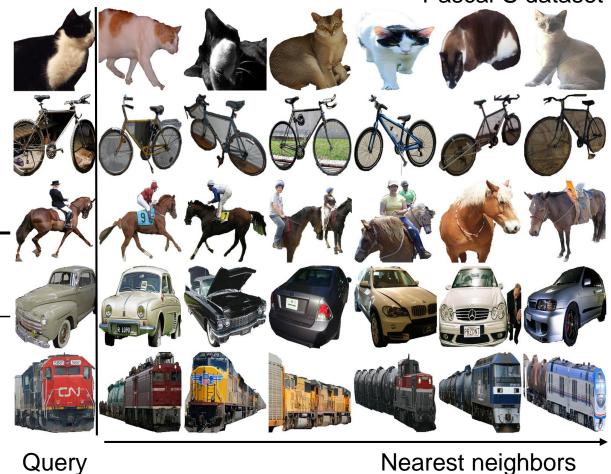
- → decouples feature learning from clustering;
- → is not strongly dependent on the network initialization;
- → is more predictive of the semantic segmentation task as we defined a contrastive learning objective at the **pixel-level**;
- → contains higher-level visual information compared to the regions obtained from boundary detectors;
- → can be combined with K-Means to obtain semantically meaningful clusters.

III. Experiments: Semantic Segment Retrieval (PASCAL)

Pascal-S dataset

- Retrieve neighbors from train set for val set
- Evaluate for 7 classes and 21 classes on PASCAL

Method	MIoU (7 classes)	MIoU (21 classes)
SegSort	10.2	-
Hierarch. Group.	24.6	-
MoCo v2	48.0	39.0
MaskContrast (Unsup. Sal.)	53.4	43.3
MaskContrast (Sup. Sal.)	62.3	49.6



IV. Experiments: Transfer Learning and Semi-Sup. Learning

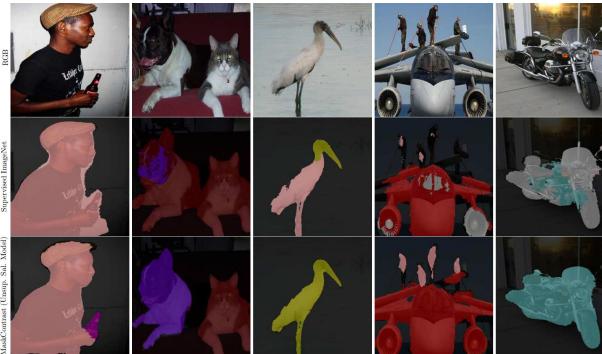
Transfer learning: PASCAL, COCO and DAVIS datasets (MoCo init.)

Model	PASCAL	COCO	DAVI	IS '16
	(MIoU)↑	(MIoU)↑	$\mathcal{J}_{\mathbf{m}}$ \uparrow	$\mathcal{F}_{\mathbf{m}}\uparrow$
MoCo v2	45.0	35.2	77.1	77.2
MaskContrast (Unsup. Sal.)	55.4	45.0	78.0	77.8
MaskContrast (Sup. Sal.)	57.2	47. 2	82.0	80.9

<u>Semi-supervised finetuning</u> on PASCAL (ImageNet init.)

Label Fraction	1%	2%	5%	12.5%	100%
ImageNet Classifier Init.	43.4	55.2	62.7	68.4	78.0
+ MaskContrast (Unsup. Sal.)	50.5	57.2	64.5	69.0	78.4
+ MaskContrast (Sup. Sal.)	51.5	59.6	65.3	69.4	78.6

<u>Qualitative results with 1% labeled (~100 images)</u>



KU LEUVEN

Qualitative Results (Linear Classifier on PASCAL)

KU LEUVEN

Conclusion

- MaskContrast consists of 2 steps:
 - (1) mine object mask proposals (saliency)
 - (2) learn semantic pixel embeddings through a contrastive loss
- The perceptual prior prevents the model from latching onto low-level image features
- Encouraging clustering results on PASCAL and transfer results to ImageNet/COCO/DAVIS

Future Work

- Extract multiple and more detailed masks for each image
- Use extra sensory data

